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Some modification of source terms is proposed for gauge field theories. In the 
SU(2) Yang-Mills theory with arbitrary external sources a canonical quantiz- 
ation procedure leads to a Lorentz-invariant S-matrix only when Fermi statistics 
is imposed on ghost fields. The usual source terms lead to a result that breaks 
Lorentz invariance and is singular when external charges Jg vanish. The cases 
of the Abelian scalar electrodynamics and the SU(2) Yang-Mills field with 
external currents (J~ = 0, J7 ~ 0) are also discussed. 

1. I N T R O D U C T I O N  

In the  p resen t  p a p e r  we car ry  out  the  canon ica l  pa th - in tegra l  quant iz-  
a t ion  o f  the  S U ( 2 )  Y a n g - M i l l s  field theo ry  in the  presence  o f  ex terna l  
sources.  We  stress that  some modi f ica t ion  has to be made  in o rde r  to arr ive 
at  a plausible f o rmu la  for  the  S-matr ix .  The usual  source  terms (Schwinger ,  
1951), when  quan t i zed  canon ica l ly ,  lead  to a sharp  d i sc repancy  be tween  
the case  o f  vanish ing  ex te rna l  charge  ( C a b o  and Shabad ,  1986) and  the 
case o f  nonze ro  externa l  charge  (Kiskis ,  1980). 

In  the i r  recent  p a p e r  C a b o  and  S h a b a d  (1986) quant ize  the Y a n g - M i l l s  
field t heo ry  with ex te rna l  sources ,  but  they  carry  out  the  prec ise  p r o c e d u r e  
only  for  the  case o f  zero ex te rna l  charges  J~ = 0. They  use some heur is t ic  
a rguments  to genera l ize  the i r  par t ia l  result ,  and  some doub ts  remain .  It 
seems to us tha t  the  canon ica l  p rocedu re  shou ld  be car r ied  out  also in the 

a 
gener ic  case J ,  ~ 0. Then  one  cou ld  dec ide  which  conclus ion ,  that  o f  C a b o  
and  S h a b a d  (1986) or  tha t  o f  Kiskis  (1980), is correct .  

We p r o p o s e  to start  wi th  a new, modi f i ed  Lagrang ian ,  which,  by  the 
way,  is the  effective Lag rang ian  o f  C a b o  and  Shabad .  Then we ana lyze  the 
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canonical structure of this new theory; in particular we find all constraints. 
Further, we define the generating functional (S-matrix) as the path integral 
over the almost unstrained phase space. At last, after some calculational 
tricks, we arrive at the desired result--the relativistic formula for the S-matrix. 

One could object that this is just a tautology--we have obtained the 
result imposed earlier. But it turns out that our final formula substantially 
depends on the statistics of  the subsidiary scalar fields. If  we had treated 
them all as bosonic variables, then the final formula would lose both Lorentz 
invariance and BRS supersymmetry (Becchi et al., 1976). This is a completely 
new phenomenon,  because the canonical quantization procedure in the 
usual covariant gauge leads to a Lorentz-invariant S-matrix formula (Kugo 
and Oijima, 1979), no matter what statistics ghost fields obey. 

All this leads us to the conclusion that our modification is plausible 
and that it is worthwhile to study this new theory. Maybe we are still far 
from physical reality, but the theory possesses some very interesting features 
which should be analyzed. We argue that the previous attempts to implement 
naive non-Abelian Gauss laws as constraints on physical states (Kiskis, 
1980; Goldstone and Jackiw, 1978; Das et al., 1979) were all doomed from 
the s tar t - -one should start with a different modified Lagrangian. Further 
physical consequences of our modification are the subject of our current 
research. 

2. CANONICAL QUANTIZATION OF THE SU(2) YANG-MILLS 
FIELD THEORY WITH MODIFIED SOURCE TERMS 

The naive source terms (Schwinger, 1951) seem to be unfounded in 
the case of  gauge fields; however, their presence breaks gauge symmetry 
and the degeneracy of  the theory seems to be removed (Biatynicki-Birula 
and Przeszowski, 1987). This is why we would not like to follow the 
gauge-invariant source term prescription (Fradkin and Tseytlin, 1984; 
Vilkogheky, 1984). Instead, we propose to introduce some subsidiary scalar 
fields, which play the roles of ghosts and Lagrange multipliers. The modified 
Lagrangian should be a Lorentz-invariant quantity and should obey the 
same gauge transformation laws as the naive one does (Bialynicki-Birula 
and Przeszowski, 1987). 

We propose to start with following Lagrangian density: 

L m o  d = - Z.~ ~v--llz'a tz"~"4"aat'~'~'4-QaDa~bjb'~+eabC6aJb'~DCd~c d -  .~,~., -- (1) 

where 
a _ _  a a a b c ~ b  a e  - O~A~, + F ~ , - O ~ , A ~  ge  ~ , ~  

- -  a c b ~ c  D ~  b = 0 . 8  ~b -1- ge  ,%, 
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and to treat all fields as the independent variables. The above formula is 
the effective Lagrangian of Cabo and Shabad (1986). Here we are not going 
to repeat their heuristic arguments in order to prove its correctness--we 
just take it as a possible starting point. 

Before we reach the heart of our problem, we first study the gauge 
symmetry properties of  our Lagrangian (1). One can impose a gauge trans- 
formation by means of a unitary SU(2) matrix U: 

A , A  O. + A~A '~ U (2a) 

a a.._) J,,A u-'J~x~ (2b) 

o a A a  ~ u - I o a x a u  (2c) 

~aA ~ --> U - ~ A ~ U  (2d) 

c~A " -> U- l  c~A aU (2e) 

where h ~, the SU(2) group generators, are normalized by the condition 

Tr{h aA b} = 6oh (2f) 

Now one can easily find that under such transformation Lmo d changes 
only by the field-independent factor: 

Lmod '-> Lrnod __! Tr[(0,, U-')Ja'~X ~  (3) 
g 

This remarkable property allows us to simplify considerably our quantiz- 
ation procedure. One can choose U = Uo, where the matrix Uo parametrizes 
external sources J~, (Biatynicki-Birula and Przeszowski, 1987): 

a - - i  . a  a 
J~, = U0 J•h Uo (4) 

Here j~, is no longer an arbitrary quantity, but some conditions are to be 
imposed on i t -- those conditions implicitly define Uo. For our canonical 
quantization program it is prudent to choose the following condition: 

j~)(x) = t~a3p(x) (5) 

Now we can change the names of the subsidiary fields, c 3 and c -3 into 
and r~, respectively, and use superscripts 4, b , . . .  for the color indices 1, 

2. All this allows us to write the modified Lagrangian density in the following 
form: 

ff.,,,,,a lr~,, ~.,,u~.a_A3p_Ai~jT+.-.ar a~--~ ec~.6, = - a ~ - . ~ - -  - ~ tgpe , '%-o~  JiJ 

+ p[e  aGe~'-OoCa + ggaAgrl - gA3gac a] + Q3[/5 ~3b .h~ - - ! - I i  J i J  

- gamabcb - ~-,ama3"rl -- ~ m 3 a c  a -- ~m33"r/ (6) 
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where we have introduced new symbols: 
aE 3a5 e = e (6a) 

m ab = e acdj~Ddb (6b) 

Because /~mod differs from Lmo d only by the field-independent factor, we 
can begin the canonical quantization procedure with /Tmod- First we look 
for the canonical conjugate momenta: 

E~(x) := 6S/  SA~(x) --- F~i(x) (7a) 

E~(x) := 6S/  6A~(x) --- 0 (7b) 

r := 6S/  SEa(x) = qzeabp(x)6b(X) (7C) 

qa(x) := 8S/  SQ"(X) =- 0 (7d) 

7r3(x) := 8S/  MI(x) -- 0 (7e) 

#O(x) := 8S/  8~7(x) ==- 0 (7f) 

where the action S is defined as 

S := f d 4 x  ]Zmod(X ) 

Dots stand for the time derivatives and in equation (7c) the minus (plus) 
sign corresponds to the case of fermion (boson) fields c and ~. In the first 
case c and ? are to be represented by the Grassmann variables and a minus 
sign comes straightforwardly from the differentiation rules for such vari- 
ables. 

Equations (7b) and (7d)-(7f) describe the primary constraints of our 
modified Lagrangian. This means that the fields A~, Q~, r/, and ~ are 
nondynamical and they should be eliminated from the truly unconstrained 
dynamics. However, we will use the Dirac prescription (Dirac, 1950, 1959, 
1964), which systematically removes the redundant degrees of freedom. 
Thus, we build the Hamiltonian density using the usual formula and intro- 
duce the Lagrange multipliers (u ~, v ~, A, ])  for the primary constraints: 

:= A'~ E~ + Ea ~ "a - L+ vaE'~ + u" q" + ~ ~t "3 "~ }~'7"1 "3 

1 a 2 1 a 2 a .a a ab  a a3 =~(E~) +~(B~) + A , . 1 , - A o [ D ,  E~ +p8 ] 
Q a r  ~6  A b  r ~ b  .aT - -  3b  �9 b te p,ao--L,i JiJ-rQ3[IJ - - D i  Jbi] 

a a b  3 6  6 ~:g~r e [Aoc --Aon]:~(~ra/o)e~e[m~b%% mb3 rd 

+ ~[m3% ~ + m33n] + v~E7 + X~r 3 +,~r 3 (8) 
a 1 a where B~ =~%kF~k. Further, we can impose the canonical equal-time 

Poisson brackets: 
{E~(t, x), A~(t, y)} = g..8"b6(3)(x--y) (9a) 
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{q~(t, x), Qb(t,  y)} = t~abt~r y) (9b) 

{~ra(t, x), eb(t, y)} = 6ab6(3)(x--y) (9C) 

{~3(t, X), ~(t, y) = {'n'3(t, x), v/(t, y)} = 6(3)(x-y) (9d) 

and all other brackets vanish identically. This allows us to look for the 
secondary constraints. For, if the primary constraints jus t  come from our 
Lagrangian as relations on the canonical conjugate momenta, then the 
secondary ones are to be imposed as the stationarity conditions (Dirac, 1950, 
1959, 1964): 

d 
q~l (x):= ~-~ E ~ ( x )  

= {E~'(x), H}  
= - D ~ b E ~  + 8~'(Q2p + glr2.)  - 6~2(Q'p + g r r l . )  

+ 6aa(geae"rrac 6 -  p) = 0 (10a) 

d 
X~(X) := ~ q " ( x )  

= {qa (x), H} 
= D a b j  b~ 

c,a l a l  i J i  = 0  (lOb) = o ~oP - 6a2AgP + 6a3[ j -- Dab .b 

d 
r := ~ ~'~(x) 

= {Tr3(x), H} 
a 

= +geaC'craAbo• e a b m  b3 --  'qm 33 = 0 (10c) 
P 

d 
~(X)  := ~-~ "#3(X) 

= {'g'3(x), H} 

= m3aca+ m33~? = 0 (10d) 

d 
~02(X) := d-t ~;~1 (X) 

= {q~(x), H} + ~b,(x) 

= - - t  ~ + D  i3aJi.a + m 3 a Q  a + m33Q 3 - e aC,--6.-.a~,-.Czaol~,i tzi = 0 (lOe) 

d 3 x2(x) := ~ x,(x) 

= {x3(x), H} +)~3(x) 

= m3aAg + fi - DTbj~ - ea6Eaj~ = 0 (lOf) 
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where H = S d3x ~ ( X ) .  One can check that there are no more secondary 
constraints and that they are all of  second class if only the condition 

p(x)m33(x) ~ 0 (11) 

is satisfied at every point x. 
Now we could write down the path-integral formula for the S-matrix 

(Senjanovic, 1976; Fradkin and Fradkina, 1978), but it would depend 
drastically on what statistics we have imposed on the subsidiary fields c a, 
7/, ~. Instead we propose to solve some constraints and reduce the set of  
independent variables. First we find the values of A~, Ao 2, 7/ (a~, a t ,  7o), 
then the values of  B" (ba), and finally the value of  A3o (a3). Now there are 
only two constraints left, ~ = 0 and A'~ = 0, and in order to arrive at the 
completely unconstrained dynamics one should solve them as well. However, 
we will not pursue this; instead, we will stop here and consider the almost 
unconstrained prescription. Now our Hamiltonian density assumes the 
following form: 

~o(ag, 70) 1 a 2 1 a 2 . . . .  a ~ a b - b  =~ (E i )  +~(Bi)  +A~j~ *aoU~ ~ 

-4- ( ~a/p)ea6 m6e ce + ~lom3a c a (12) 

and the residual constraints are still of  second class, 

{X31(t, x), ~3(t, y)} = mS3(t, x ) B ( x - y )  # 0 (13) 

This allows us to write down the phase path-integral formula for the 
generating functional (Senjanovic, 1976; Fradkin and Fradkina, 1978): 

I DE7 DA~ D~r ~ De a 8(~o 3) 6(X 3) Det m 33 Z[j~]  := 

• exp i I d4x [A~E7 + ~%.n = ~o(ag, 7g)] (14) 

We see that our system possesses ten independent dynamical degrees of 
freedom and we disagree with the arguments of  Cabo and Shabad (1986) 
that there are only six physical modes. We connect the extra physical modes 
with a new phenomenon: some subsidiary scalar fields are dynamical now. 
Unfortunately, this posibility was overlooked in their paper. 

However, we would like to rewrite the above path-integral in an 
explicitly convariant form. Our first trick is simple; we introduce 8-func- 
tionals in order to impose the definite values a~ on A~ fields: 

�9 a a _ ao)8(X1)8(q~l ) Z[j~,] = DE7 DA~, Drt a De a 8(A~ " 3 3 

• Det m 33 exp i f d4x "a a + ~o(Ao, ~o)] [ Ai E i + CaTra a (14') 
3 
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Now there is a point where we have to decide whether subsidiary scalar 
fields c a are to be treated as bosons or fermions. First we suppose that they 
are anticommuting variables. 

Path integrals over anticommuting Grassmann variables are already 
well known (Itzykson and Zuber, 1980) and for example we have 

f O~3Dc3expifd4x[-~3m33c3+g3m3aca-~om33c3 ] 

= Det m 33 exp - i I d4X "r/~ (15a) 

f D A ~ a  a a a 5  f a a a a  Dc 6[(pAo-pao)e ]. . .= A o D ~ ( A o - a o ) " "  (15b) 

where 

6 a = -e~brr/p 

Our next step is again obvious; we introduce fields Ao 3, Qa as the 
dummy variables: 

I] 8( X~) 6(-pA 2o + pa~) 8(pA~- pa~) 6( ~ 3) 
x 

f DA3oDQ,~expi f d 4 x [ Q a ( x ) x ~ ( X ) _ _  3 3 = Ao(x)~o,(x)] (15c) 

All this leads to the following form of our path-integral formula for the 
generating functional: 

Z [ j . ] =  DE~DA. DQ"D6~Dc"expi d x[EiA~+pe c c -2~] 

(16) 

where we have 

~ 1  1 a 2 a .a a ab b a3 =~(E i )  +�89 -Ao(D, E,+p8 ) 
- d  a 9 - a  a 9 _ _ ~ a m a b c b  -pg(c Aoc -c  c Ao) 

+ peaS Qa A ~o + Qa( D'~bjb-- /68 a3) 

perform the Gaussian integral over E~ and arrive at the Now we can 
Feynman path integral: 

Z[j~.] = I DA~DQ"D~aDc'~expif d4xL~mod(x) (17) 
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where the modified Lagrangian density /~mod is given by equation (6). 
However, the above formula is not quite satisfactory, since the external 
current j~ is not arbitrary. In order to arrive at the formula for an arbitrary 
current J~, we change the integration variables: 

A~, ~ RgbAb~ +1 abcr*bd~ ncd a e ~o O~,~0 (18a) 
g 

c" -* RgbC b (18b) 

C a -'> RgbC b (18c) 

Qa ~ g~bQb (18d) 

where the orthogonal matrix R~ b is connected with the unitary matrix Uo 
[from equation (4)] by the relation 

R~ b : =  Tr{A"UoA bUol} (19) 

From the above definition of Ro, using the properties of A, one can easily 
find the following relations: 

R aboac  = 8 bc (20a) 0 1"0 

abcl~ai l~bj o c k - -  e ijk (20b) 
l ~  0 1~-  0 z ~ .  0 - -  

Thus, the Jacobian of the transformation (18) is equal to unity. This leads 
to the following relation for the generating functional: 

Z[j~ ] = exp iCb( Ro) Z[ J~, ] (21) 

where 

f rt4~ ( abcTatzT2~bd.a i~cd~ qb(Ro)= ~, ~ ~e J --o ~,~--o J (22) 

Z [ J . ] = f D A : D Q a D e ' ~ D c a e x p i f d 4 x L m o  d (23) 

here Lmod is the modified Lagrangian density given by equation (1). Thus, 
we have killed two birds with one stone--we have found both the path- 
integral formula for the generating functional in the presence of arbitrary 
external sources and its transformation law. 

Now, we return to our earlier problem of the scalar field statistics and 
suppose that they are bosons. The analogs of equations (15a) and (15b) 
will contain the inverse power of Det m 33 and the factor Det p-4 on their 
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right-hand sides, respectively. The rest of the analysis will follow similar 
lines as before; our final formula is 

I [m33q2 f Z[j~,]= DA~ DQ" D6a Dc ~ Det[-yJ expi d4x s (24) 

or, in the generic case, 
I F jajbmab "] 

D . /  Joao,,, / Z[J•]  = DA" DO a D~ ~ Dc ~ e,L(j )2(lg)2 ] 

x exp i j d4x Lmoa(X) (24') 

Note the very surprising phenomenon that a wrong statistics of the 
subsidiary fields breaks the Lorentz invariance of our final formula. Our 
starting point was a Lorentz-invariant quantity (no matter what statistics 
the subsidiary fields obeyed) if only external sources J~, transformed as 
Lorentz vectors. However, the canonical quantization procedure favors a 
time coordinate; thus, an explicit Lorentz invariance comes out in such a 
subtle way. 

Unfortunately, we cannot give any intuitive explanation of our results, 
we just stress their uniqueness. For, if one quantizes gauge field theory in 
covariant gauges (Kugo and Oijima, 1979), then all ghost fields are dynamical 
and Lorenta invariance of the S-matrix formula will not depend on the 
ghost field statistics. Also, the source term modification when all ghosts are 
nondynamical, e.g., in the Abelian scalar electrodynamics (see Appendix 
A) or in the SU(2) Yang-Mills fields coupled to external current (J~ = 0, 
J~ ~ 0; see Appendix B) will not give rise to such a phenomenon. Thus, we 
can argue that only the simultaneous presence of dynamical and nondynamieal 
ghost degrees of freedom will lead to a final result which is sensitive to the 
statistics of ghosts. 

In closing this section, we point out the BRS-like supersymmetry 
(Becchi et aL, 1976) of our path-integral formula (23): 

a 
3BRSA~ = D~bCbA (25a) 

6BRS ~a = -QaA (25b) 

6BRsC ~ = -- �89 ~b~cbc~A (25C) 

6BRsQ ~ = C~A (25d) 

where A is an infinitesimal, constant parameter. There is a difference between 
the actual invariance and the usual one. Here we also observe the supersym- 
metry invariance in the presence of external sources, and usually source 
terms break the BRS invariance. A detailed discussion of this problem is 
postponed for our next paper. 
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3. CANONICAL Q U A N T I Z A T I O N  OF T H E  SU(2) Y A N G - M I L L S  
FIELD T H E O R Y  W I T H  N A I V E  S O U R C E  T E R M S  

In this section we sketch some features of  the canonical path-integral 
procedure in the case of  the usual (naive) source terms (Schwinger, 1951). 
Now our Lagrangian density is simple: 

l ~ a ~  ~ a , ,~ t~  (26) Znaive ~ - ~  ~t p.v--,x -'u. 

We will carry out our analysis in the case when the external charges take 
the following form: 

J ~  = pt~ a3 (5') 

and then transform our final formula back to the generic case. First we look 
for the canonical conjugate momenta:  

E~(x) := 3Sna~w/ 3A~(x) (27a) 

E~(x) := 3 S ~ r  3A~(x) (27b) 

where 

f 
Snaiv e -~- J d 4 x  Lnaive(X) 

and we write the resulting Hamiltonian density: 
a "a 

= E i A i  - Lnaive+ v a E ~  

1 a 2 1 a 2 a , a  a a b  b a 3  a a - A i ( D i  Ei +p3 )+v Eo = ~ ( E , )  +~(B~) + A d ,  (28) 

Further, we can impose the canonical Poisson brackets: 

{E~(t, x)Ab(t, y)} = g~abt~(3)(X--y) (29) 

(all other brackets are equal to zero) and find the set of  secondary con- 
straints: 

~ = { Eg, H} = -O~b E b -  p8 a3 = 0 (30a) 

a �9 a abc,~cr '~bdrrd t~a3 + D a b  .b ~ 2 = { ~ , H } + ~ 2 = - g e  ,~oU, ~ -  , j ,=O (30b) 
~3={q93, n } + - 3  3bc bde - -d  . . . . . . .  

~ 2 =  g e  e f i t o lq to l J  i Iz i 

+ [J + D9aj~ + eqc~b(--E~ + D~dAdo) = 0 (30C) 

One can easily convince oneself  that all constraints are of  the second class, 
because we generally have 

Det{| ~, oJ}o=o = Det[gap2(x)m33(x)]2:A 0 (31) 

where 

| = { E ~ ,  ~l,a ~p~, ~t)3}, i = 1, 2, . . . ,  10 

m33(X) = ,F ,3cd j~ ' (x )Ddi3(X)  
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Now we can write down the phase path-integral formula for our system 
(Senjanovic, 1976; Fradkin and Fradkina, 1978): 

I ~ ~ 
Z[j.] = DE. DA~ 6(Oi)[Det{O i, O j/Jo=ojl~/2 

f d4x a "a • exp i [E, Ai - Y(] (32) 
3 

and after some simple calculational tricks we arrive at the Feynman path 
integral: 

f 3(D~ j~ ) Det[g3pm 33] Z[j.] = DA~ 3b .b 

X exp i f dax (L+A3p-A,~jT) (32') 
3 

Finally we change the integral variables: 

e Ko o~t~o (33) 
g 

where the matrix Ro is given by equation (19). and we arrive at the final 
formulas 

Z[ j . ]  = Z[ J.] exp iCb( Ro) 

Z[J~] = j DA~a 8(j~D~bjb~) Det[g Jodom ] 

(34) 

ff a a. x e x p  i d4x ( L + A j  ) (35) 

Here again, we have obtained a final S-matrix formula which explicitly 
violates Lorentz invariance through our initial Lagrangian (25) was Lorentz- 
invariant. One can also notice that expression (35) is singular when J~ ~ 0 
and one cannot smoothly pass to the desired result (Appendix B, Cabo and 
Shabad, 1986): 

Z[Ji]=f DA~ 6(D~bJ~)Detm~bexpi f d4x(L-A'~J~) (36) 

We argue that the lack of  Lorentz invariance and the above discrepancy 
are evidence for the necessity of source term modification. 
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A P P E N D I X  A 

Here  we analyze a s imple  case of  an Abel ian  gauge field theory  in the 
presence  of  arbi t rary  source  t e r m s - - s c a l a r  e lec t rodynamics .  We p ropose  to 
invert the previous  order  o f  presenta t ion  and discuss the case of  the usual  
source te rms first. Thus,  we start  with the fol lowing Lagrangian  density: 

L = - ~ f ~ . ~ f ~ + [ D ,  qb12+F(]qb[2)+A"J, +~q*49+~749 * (A1) 

where  f ~  = O~,A~-O~4 t, and D~ = 0~. + ieA~.. 
First we look for  the canonical  conjugate  momen ta :  

El : -  6S/&4i =fo~ (A2a) 

Eo := 6S/  6Ao =- 0 (A2b) 

~rlr3S/6(b = (DOS) (A2c) 

e := 6 S / 6 6 "  = DoCb (A2d) 

and  write down  the Hami l t on i an  density: . 

= �89 E,)2 + �89 B,)2 + ~* Ir + I D,cb l2- Ao[ O,E, - ie(1r* ck - ~r~b*) - J o ]  

+ A,J, - qb*~7 - Cbrl* - v(l l 2) + vEo (A3) 

I f  now we impose  the canonica l  Poisson brackets  

{E . ( t .  x), A~(t, y) = g .~$(3 ) (x -y )  (A4a) 

{~r*(t, x),  ~b*(t, y)} = ~ (3 ) (x -y )  (A4b) 

{~'(t, x),  ~b(t, y)} = 6 (3 ) (x -y )  (A4c) 

(all o ther  brackets  are equal  to zero),  then  we will obta in  the fol lowing 
sequence  o f  secondary  constraints:  

~ = {Eo, H}  = O,E~ - ie(*r*ck - ~r~b*) - Jo = 0 (ASa) 

q~2 = {q~, H } +  ~b~ = -Otis+ ie(4)*~ - ~b~*) = 0 (A5b) 

'P3 = {~2, H }  + r 

= -O,)i + ie(~*~7 - 4)71") + ie(Tr~7* - ~*~7) 

-- e2Ao(~b*7/+ ~b~/*) = 0 (A5c) 

Further ,  all constraints  are of  second class, because  for  arbi t rary  sources 
7/, 77* we genera l ly  have 

Det{O ~, OJ}o=o = Det[eS(~b~* + I~* 3'~) 4] ~;~ 0 (A6) 

where  O ~ = {Eo, ~ .  q~2, P3}. 
N o w  we are in a posi t ion to write down  the phase  path- integral  fo rmula  

for  the genera t ing  funct ional  (Senjanovic,  1976; Fradkin  and Fradkina ,  
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1978) and to perform some simple calculations: 

z[&, n, n*] 

= I DAN DE,  D~r Drr* Dc~ D4~* 3(O/)[Det{O i, OJ}~ 1/2 

/ .  

• i j d4x ( E j t  ~ + r ~  * + r* ~ - ~ )  

= f DA, DE, D r  D r *  D6  D~b*6(qh)6(~02) Det[e2(~7*6 + n6*)] 

xexp i I d4x ( E , A , + m ~ * + r * ~ -  ~ ( A  = 0) 

= I  Da"D6D6*6(~~ Det[e2(TNb*+~?*(ch)]expi f d4xL (A7) 

One can notice the close analogy between the final expression and a result 
of the usual Faddeev-Popov prescription (Faddeev and Popov, 1967); we 
have the gauge condition 

~02 = O ~J ~ - ie( rt * dp - 774,*) = 0 (A8) 

and the ghost field contribution 

Det[e2(~7*q5 + ~7~b*)] (A9) 

However, we would like to stress that this similarity is superficial, 
because our system is not singular (gauge-invariant), though its dynamics 
is still constrained. One should also notice that while the Faddeev-Popov 
prescription holds for a system with first-class constraints, our model 
possesses the second-class ones. 

We can also introduce the modified source terms: 

1 /~u  2 Lmod=--~f "f,~ + lD.chJ - F(14~12) + A'~J. + 4m * + 4~ * n 

+Q[O.J~'-ie(n&*-~?*(a)]+e2e('q4,*+*l*d?)c (A10) 

but this will change substantially nothing--all  extra degrees of freedom are 
nondynamical: 

6Lrnod/ ~O( X ) = ~tmod/ 6~( X ) = 6tmod/ 6C( X ) ~- 0 (A11) 

One can check that the new secondary constraints just cancel the subsidiary 
fields Q, c. and ~ and the final formula will not be changed at all. It is a 
trivial observation that in the present case the statistics of subsidiary fields 
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[in equation (A10)] does not influence the Lorentz invariance of  the S-matrix 
formula. 

A PPENDIX B 

The quantization o f  the SU(2)  Yang-Mil ls  field theory with the usual 
source term ATJ~ has been successfully performed by Cabo and Shabad 
(1986), so we will just quote their final result: 

Z[Ji] = D A .  (Di Ji) Det(mab) exp i d4x ( L - A i J , )  (B.1) 

Here again, as in the Abelian case, this result looks plausible but nevertheless 
we will find out the consequences  o f  the source term modification. 

N o w  our modified Lagrangian density looks like 

_ ! w " ~ w  a _ a a r ~  _ Q~D~bj b + ~amabcb Lmod = 4 -I a/xv "~i~i (B2) 
and it is easy to check that all subsidiary fields are nondynamical:  

t~Lmod/SOa(x)  = 8Lmod/t~Ca(X) ----- ~Lmod/t~ca(x)  = 0 ( B 3 )  

Thus, we again observe that they disappear from the unconstrained dynamics 
either identically or because the secondary constraints 

D~bJ~ = 0 (B4a) 

mab c b = 0  (B4b) 

are to be imposed. That is why the source term modification does not 
introduce any change in the final S-matrix formula. 
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